(72x^2+12-144x^2)/(6x^2+1)^2=0

Simple and best practice solution for (72x^2+12-144x^2)/(6x^2+1)^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (72x^2+12-144x^2)/(6x^2+1)^2=0 equation:



(72x^2+12-144x^2)/(6x^2+1)^2=0
Domain of the equation: (6x^2+1)^2!=0
x∈R
We multiply all the terms by the denominator
(72x^2+12-144x^2)=0
We get rid of parentheses
72x^2-144x^2+12=0
We add all the numbers together, and all the variables
-72x^2+12=0
a = -72; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-72)·12
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*-72}=\frac{0-24\sqrt{6}}{-144} =-\frac{24\sqrt{6}}{-144} =-\frac{\sqrt{6}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*-72}=\frac{0+24\sqrt{6}}{-144} =\frac{24\sqrt{6}}{-144} =\frac{\sqrt{6}}{-6} $

See similar equations:

| -8y-8=24 | | 16-8n=-2n-20-9n | | -5/9x=-2 | | 2x+8=-2x+-2 | | 4v-3=3v-8 | | 2z=18-4z | | -1-15q=-5-16q-13 | | -15+4÷5p=9 | | 0=(-16t^2)+400t+2400 | | 20p=18+18p | | 0.90m=60+0.40m | | 8x+3+-11x=-3 | | 1+5u=-9+4u | | 2÷3×n+4=-26 | | -7f-1=-4f-9-2f | | -9-9m=-7m-3 | | 51=-7y | | 9d-7=10d | | 50+2x=44+4x | | 1x=79 | | -6y+3=-9-9y-3 | | 5(2x+6)=-12+8(x+4) | | -5w-6=-6w | | 11+7/9×n=4 | | s=-8s+18 | | -7y+10=-5y-10 | | 3/4=(-4-x)/(-2-7) | | 6x+3=6x=20=x | | -7w=6-6w | | 5+p=-4p-2+4p | | -1-6x=-2-5x | | 2s=s-4 |

Equations solver categories